A Meshless Finite-Point Approximation for Solving the RLW Equation
نویسندگان
چکیده
منابع مشابه
A Meshless Finite-Point Approximation for Solving the RLW Equation
1 Aula UTFSM-CIMNE, Departamento de Ingenierı́a Mecánica, Universidad Técnica Federico Santa Marı́a, Avenida España 1680, 2340000 Valparaı́so, Chile 2 Departamento de Matemática, Universidad Técnica Federico Santa Marı́a, Avenida España 1680, 2340000 Valparaı́so, Chile 3 Escuela de Ingenierı́a Mecánica, Pontificia Universidad Católica de Valparaı́so, Los Carrera 01567, Quilpué, 2430120 Valparaı́so, Chile
متن کاملChebyshev Collocation Spectral Method for Solving the RLW Equation
A spectral solution of the RLW equation based on collocation method using Chebyshev polynomials as a basis for the approximate solution is proposed. Test problems, including the motion of a single solitary wave with different amplitudes are used to validate this algorithm which is found to be more accurate than previous ones. The interaction of solitary waves is used to discuss the effect of th...
متن کاملExplicit Multistep Mixed Finite Element Method for RLW Equation
and Applied Analysis 3 Table 1: Solitary wave Amp. 0.3 and the errors in L2 and L∞ norms for u, Q 1 , Q 2 , and Q 3 at t = 20, h = 0.125, Δt = 0.1, and −40 ≤ x ≤ 60. Method Time Q 1 Q 2 Q 3 L 2 for u L∞ for u Our method 0 3.9797 0.8104 2.5787 0 0 4 3.9797 0.8104 2.5786 3.6304e − 004 5.2892e − 005 8 3.9797 0.8104 2.5786 7.2873e − 004 5.8664e − 005 12 3.9797 0.8104 2.5787 1.0817e − 003 6.3283e − ...
متن کاملA meshless discrete Galerkin method for solving the universe evolution differential equations based on the moving least squares approximation
In terms of observational data, there are some problems in the standard Big Bang cosmological model. Inflation era, early accelerated phase of the evolution of the universe, can successfully solve these problems. The inflation epoch can be explained by scalar inflaton field. The evolution of this field is presented by a non-linear differential equation. This equation is considered in FLRW model...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2012
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2012/802414